# Verifying point G lies on the curve ## 1. Composite field, curves and point G Composite field is ![GF2p15p17-inlined](assets/formula/GF2p15p17-inlined-light.svg#gh-light-mode-only) ![GF2p15p17-inlined](assets/formula/GF2p15p17-inlined-dark.svg#gh-dark-mode-only). And the base field is ![GF2p15-inlined](assets/formula/GF2p15-inlined-light.svg#gh-light-mode-only) ![GF2p15-inlined](assets/formula/GF2p15-inlined-dark.svg#gh-dark-mode-only), i.e. each element in the domain is a `15-bit` number. The number of extensions is 17, so the entire composite domain element can be viewed as a 17-term polynomial, each term being ![GF2p15-inlined](assets/formula/GF2p15-inlined-light.svg#gh-light-mode-only)![GF2p15-inlined](assets/formula/GF2p15-inlined-dark.svg#gh-dark-mode-only). The equation of the elliptic curve that WinRAR uses is

The base point ![G](assets/formula/GG-inlined-light.svg#gh-light-mode-only)![G](assets/formula/GG-inlined-dark.svg#gh-dark-mode-only) is

## 2. Conversion point G Convert the point ![G](assets/formula/GG-inlined-light.svg#gh-light-mode-only)![G](assets/formula/GG-inlined-dark.svg#gh-dark-mode-only) (in large integer format) into the required little-endian representation of `15-bit` segments for the field ![GF2p15p17-inlined](assets/formula/GF2p15p17-inlined-dark.svg#gh-dark-mode-only). A Python for converting the point ![G](assets/formula/GG-inlined-light.svg#gh-light-mode-only)![G](assets/formula/GG-inlined-dark.svg#gh-dark-mode-only) is as follows. ```python def to_field_repr(val, bits=15, count=17): mask = (1 << bits) - 1 result = [] for _ in range(count): result.append(val & mask) val >>= bits return result def print_field(label, field_data): print(f"{label} = to_field([") for i in range(len(field_data)): print(f" 0x{field_data[i]:04X},", end="\n" if (i + 1) % 4 == 0 else " ") print("])") Gx_int = 0x56fdcbc6a27acee0cc2996e0096ae74feb1acf220a2341b898b549440297b8cc Gy_int = 0x20da32e8afc90b7cf0e76bde44496b4d0794054e6ea60f388682463132f931a7 Gx_field = to_field_repr(Gx_int) Gy_field = to_field_repr(Gy_int) print_field("Gx", Gx_field) print() print_field("Gy", Gy_field) ``` The output can be seen in lines 435 to 456 of the WinRarConfig.hpp file. ``` Gx = to_field([ 0x38CC, 0x052F, 0x2510, 0x45AA, 0x1B89, 0x4468, 0x4882, 0x0D67, 0x4FEB, 0x55CE, 0x0025, 0x4CB7, 0x0CC2, 0x59DC, 0x289E, 0x65E3, 0x56FD ]) Gy = to_field([ 0x31A7, 0x65F2, 0x18C4, 0x3412, 0x7388, 0x54C1, 0x539B, 0x4A02, 0x4D07, 0x12D6, 0x7911, 0x3B5E, 0x4F0E, 0x216F, 0x2BF2, 0x1974, 0x20DA ]) ``` ## 3. Verify whether the Point G and PK are on the curve A Python code to verify whether the base point ![G](assets/formula/GG-inlined-light.svg#gh-light-mode-only)![G](assets/formula/GG-inlined-dark.svg#gh-dark-mode-only) and PK are on the curve is as follows. ```python # GF(((2^15)^17)) def gf2_15_add(a, b): return a ^ b def gf2_15_mul(a, b): # Modulus: x^15 + x + 1 res = 0 for i in range(15): if (b >> i) & 1: res ^= a << i # Irreducible polynomial: x^15 + x + 1 for i in range(29, 14, -1): if (res >> i) & 1: res ^= 0b1000000000000011 << (i - 15) return res & 0x7FFF # 15-bit mask def gf2_15_poly_add(a, b): return [gf2_15_add(x, y) for x, y in zip(a, b)] def gf2_15_poly_mul(a, b): res = [0] * 33 for i in range(17): for j in range(17): res[i + j] ^= gf2_15_mul(a[i], b[j]) return res def gf2_15_17_mod(poly): # Modulus: y^17 + y^3 + 1 for i in range(len(poly) - 1, 16, -1): if poly[i]: poly[i - 17] ^= poly[i] poly[i - 14] ^= poly[i] poly[i] = 0 return poly[:17] def gf2_15_17_mul(a, b): return gf2_15_17_mod(gf2_15_poly_mul(a, b)) def gf2_15_17_square(a): return gf2_15_17_mul(a, a) def gf2_15_17_add(a, b): return gf2_15_poly_add(a, b) def gf2_15_17_eq(a, b): return all(x == y for x, y in zip(a, b)) def is_on_curve(x, y, b): y2 = gf2_15_17_square(y) xy = gf2_15_17_mul(x, y) lhs = gf2_15_17_add(y2, xy) x2 = gf2_15_17_square(x) x3 = gf2_15_17_mul(x2, x) rhs = gf2_15_17_add(x3, b) return gf2_15_17_eq(lhs, rhs) def to_field(arr): assert len(arr) == 17 return arr[:] # Parameter definition b = [0x00] * 17 b = [161] + [0]*16 # Constant element in GF((2^15)^17), equivalent to b[0] = 0xA1 Gx = to_field([0x38CC, 0x052F, 0x2510, 0x45AA, 0x1B89, 0x4468, 0x4882, 0x0D67, 0x4FEB, 0x55CE, 0x0025, 0x4CB7, 0x0CC2, 0x59DC, 0x289E, 0x65E3, 0x56FD]) Gy = to_field([0x31A7, 0x65F2, 0x18C4, 0x3412, 0x7388, 0x54C1, 0x539B, 0x4A02, 0x4D07, 0x12D6, 0x7911, 0x3B5E, 0x4F0E, 0x216F, 0x2BF2, 0x1974, 0x20DA]) PKx = to_field([0x3A1A, 0x1109, 0x268A, 0x12F7, 0x3734, 0x75F0, 0x576C, 0x2EA4, 0x4813, 0x3F62, 0x0567, 0x784D, 0x753D, 0x6D92, 0x366C, 0x1107, 0x3861]) PKy = to_field([0x6C20, 0x6027, 0x1B22, 0x7A87, 0x43C4, 0x1908, 0x2449, 0x4675, 0x7933, 0x2E66, 0x32F5, 0x2A58, 0x1145, 0x74AC, 0x36D0, 0x2731, 0x12B6]) # Verification print("Verify whether the point G is on the curve:", is_on_curve(Gx, Gy, b)) print("Verify whether the PK is on the curve:", is_on_curve(PKx, PKy, b)) ```